Table 3. Refined values of the mosaic spread (full width at half height in seconds of arc) as obtained from monochromatic and TOF neutrons for model Z

	MON	TOF
15 K	$3 \cdot 8(1)$	$8 \cdot 1(3)$
60 K	$3 \cdot 2(1)$	$10 \cdot 2(3)$
295 K	$4 \cdot 0(1)$	$12 \cdot 4(4)$

extinction is pronounced only for few reflections which leads to refined mosaic spreads that are considerably smaller than the experimental estimates. It thus appears that the extinction corrections will be overestimated in least-squares refinements that are based on data sets where only a small part of the reflections are affected by extinction.
The overall counting statistical precision of a data set may be summarized by the statistical R factor, $R_{\text {stat }}\left(F^{2}\right)=\sum \sigma_{c s}\left(F^{2}\right) / \sum F^{2}$, which imposes a lower limit to the conventional crystallographic R factor, $R\left(F^{2}\right)=\sum\left|F_{\text {obs }}^{2}-F_{\text {calc }}^{2}\right| / \sum F_{\text {obs }}^{2}$. It is apparent from Table 1 that the TOF data are subject to additional uncertainties besides counting statistics to a higher degree than the monochromatic data. The agreement of the derived results, however, indicates these additional uncertainties to be of a random rather than of a systematic nature.
The purpose behind the measurement of data sets with two methods was to check whether the mean thermal nuclear positions of fluorine differ in the paramagnetic and antiferromagnetically ordered state. Actually, the low temperature of the neutron investigation reported in I as 15 K was about 60 K . We now find that at 15 K , the magnetostrictive shifts
$\Delta x=x(15 \mathrm{~K})-x(295 \mathrm{~K})$ are $-2.9(4) \times 10^{-4}$ and $-2.7(4) \times 10^{-4}$ using monochromatic and TOF neutrons, respectively. This corresponds to an average shift of $1.95(20) \times 10^{-3} \AA$ in the $\mathrm{Mn}-\mathrm{F}$ distance within the plane normal to the c axis. This shift is different from the result deduced from . γ-ray diffraction: $\Delta x=-4.8(7) \times 10^{-4}$. The implications of this subtle difference will be discussed in a forthcoming paper, dealing with the charge density distribution in MnF_{2}.

The work at Argonne was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under contract W-31-109-Eng-38.

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Haefner, K. (1964). Thesis, Univ. of Chicago, USA.
Hall, S. R. \& Stewart, J. M. (1989). Editors. XTAL2.6 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Jauch, W., Schultz, A. J. \& Schneider, J. R. (1988). J. Appl. Cryst. 21, 975-979.
Lehmann, M. S., Kuhs, W. F., McIntyre, G. J., Wilkinson, C. \& Allibon, J. R. (1989). J. Appl. Cryst. 22, 562-568.
Scheringer, C. (1986). Acta Cryst. A42, 356-362.
Wilkinson, C., Khamis, H. W., Stansfield, R. F. D. \& McIntyre, G. J. (1988). J. Appl. Cryst. 21, 471-478.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Zucker, U. H., Perenthaler, E., Kuhs, W. F., Bachmann, R. \& Schulz, H. (1983). J. Appl. Cryst. 16, 358.
Zucker, U. \& Schulz, H. (1982). Acta Cryst. A38, 563-568.

Structures of $\mathbf{N a}\left(\mathbf{I n}, \mathrm{Sc}^{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ Clinopyroxenes Formed at $6 \mathbf{G P a}$ Pressure

By Haruo Ohashi, Toshikazu Osawa and Akira Sato
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, Japan

(Received 4 January 1990; accepted 12 July 1990)

Abstract

Crystal structures have been refined from singlecrystal X-ray data for nine synthetic clinopyroxenes in the system $\mathrm{NaInSi}_{2} \mathrm{O}_{6}-\mathrm{NaScSi}_{2} \mathrm{O}_{6}$, crystallized at 1770 K and 6 GPa pressure. The structures are isomorphous with other sodium pyroxenes. The space group is $C 2 / c, Z=4$. In and $S c$ occupy a distorted octahedral ($M 1$) site. The $M 1-M 1$ dis-

0108-7681/90/060742-06\$03.00

tances and the $M 1-\mathrm{Ol}-M 1$ angles correlate with the mean $M 1-\mathrm{O} 1$ distances in such a way as to follow two different trends, suggesting that there are two different electronic states for the octahedral In^{3+} ions. The $\mathrm{Si}-\mathrm{O}$ distances constitute two populations which can be related to the mean electronegativity of the octahedral ($M 1$) ions. From the $\mathrm{Si}-\mathrm{O}$ distances, the electronegativites of the two In^{3+} ions are 1.2 and 1.7 on Pauling's scale.
© 1990 International Union of Crystallográphy

Table 1. Crystal data for nine $\mathrm{Na}\left(\mathrm{In}, \mathrm{Sc}^{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ clinopyroxenes

	In 100	In80Sc20	In65Sc35	In60Sc40	In55Sc45	In50Sc50	In40Sc60A*	In40Sc60	In20Sc80
$a(\AA)$	9.8997 (5)	9.8907 (5)	9.8811 (5)	9.8782 (5)	9.8734 (5)	9.8701 (4)	9.8634 (6)	9.8659 (5)	9.8516 (5)
$b(\AA)$	$9 \cdot 1310$ (3)	$9 \cdot 1164$ (2)	$9 \cdot 1043$ (2)	$9 \cdot 1008$ (3)	9.0947 (2)	9.0901 (2)	9.0827 (3)	9.0848 (2)	9.0698 (2)
$c(\AA)$	$5 \cdot 3656$ (3)	$5 \cdot 3623$ (3)	$5 \cdot 3592$ (3)	$5 \cdot 3582$ (3)	$5 \cdot 3570$ (3)	$5 \cdot 3559$ (2)	$5 \cdot 3542$ (4)	$5 \cdot 3553$ (3)	5.3521 (3)
$\beta\left({ }^{\circ}\right.$)	$107 \cdot 226$ (2)	$107 \cdot 204$ (2)	$107 \cdot 188$ (2)	107.191 (2)	$107 \cdot 187$ (2)	$107 \cdot 179$ (2)	$107 \cdot 174$ (3)	$107 \cdot 178$ (2)	$107 \cdot 175$ (2)
$V\left(\AA^{3}\right)$	$463 \cdot 26$ (4)	461.87 (4)	460.59 (4)	$460 \cdot 18$ (4)	459.55 (4)	459.10 (3)	458.28 (5)	458.58 (3)	456.90 (3)
M,	289.98	276.00	265.52	262.03	258.54	255.04	248.06	248.06	$234 \cdot 08$
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	$4 \cdot 16$	3.97	3.83	3.78	3.74	$3 \cdot 69$	$3 \cdot 59$	$3 \cdot 59$	3.40

Table 2. Data collection information for nine $\mathrm{Na}\left(\mathrm{In}, \mathrm{Sc}_{\mathrm{C}}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ clinopyroxenes

	In 100	In80Sc20	In65Sc35	In60Sc40	In55Sc45	In50Sc50	In40Sc60A	In40Sc60	In20Sc80
Size of crystal	0.13×0.06	0.13×0.12	0.08×0.08	0.11×0.08	0.16×0.12	0.12×0.08	0.12×0.12	0.12×0.12	0.17×0.10
(mm)	$\times 0.08$	$\times 0.12$	$\times 0.06$	$\times 0.04$	$\times 0.11$	$\times 0.06$	$\times 0.12$	$\times 0.12$	$\times 0.10$
$\mu\left(\mathrm{cm}^{-1}\right)$	55.8	49.0	44.0	$42 \cdot 3$	40.6	38.9	$35 \cdot 5$	35.5	28.6
$F(000)$	544	521.6	504.8	$499 \cdot 2$	493.6	488.0	$476 \cdot 8$	476.8	454.4
T (K)	296	297	297	296	296	296	297	298	298
h	0 to 14								
k	0 to 13								
l	-7 to 7	- 7 to 7	- 7 to 7						
No. of reflections									
Measured	807	805	802	802	801	801	800	800	798
Observed	793	800	776	761	790	767	785	790	781
Used	792	799	774	758	787	759	771	785	780
R	1.671	1.857	1.654	2.011	1.887	2.351	1.839	1.818	1.938
$w R$	3.745	4.641	3.158	$3 \cdot 172$	$5 \cdot 128$	4.351	4.344	4.255	5.560
S	1.674	$2 \cdot 146$	1.370	$1 \cdot 368$	2.330	1.894	1.977	1.933	2.490
$(\Delta / \rho)_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	0.719	0.851	0.834	0.749	0.700	0.824	0.618	0.605	0.585
$(\Delta / \rho)_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.652	-1.243	-0.841	-1.458	-1.027	-0.991	-0.695	-0.889	-1.210

Introduction

The dependence of $\mathrm{Si}-\mathrm{O}$ distance on the size and electronegativity of the octahedral M^{3+} ion was examined for the $\mathrm{Na} M^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes by Ohashi (1979, 1981, 1983) and Ohashi, Fujita \& Osawa (1982, 1983). The $\mathrm{Si}-\mathrm{O}$ distances correlate with the electronegativities of the octahedral (M1) ions in such a way that they follow two different trends: the $\mathrm{Sc}-\mathrm{Ti}-\mathrm{V}-\mathrm{Cr}-\mathrm{Al}$ series and the $\mathrm{In}-\mathrm{Fe}-\mathrm{Ga}$ series. In the former, the octahedral ($M 1$) sites are occupied by lower electron density ions, whereas in the latter the octahedral ($M 1$) sites are occupied by higher electron density ions. To study the role of the mean electron density of the octahedral (M1) ions, the crystal structures have been refined for nine synthetic clinopyroxenes in the system $\mathrm{NaInSi}_{2} \mathrm{O}_{6}-\mathrm{NaScSi}_{2} \mathrm{O}_{6}$.

Experimental

All the crystals were synthesized by solid-state reaction using a belt-type high-pressure apparatus (Fukunaga, Yamaoka, Endo, Akaishi \& Kanda, 1979). Mixtures of crystalline $\mathrm{Na}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}, \mathrm{In}_{2} \mathrm{O}_{3}, \mathrm{Sc}_{2} \mathrm{O}_{3}$ and SiO_{2} were sealed in platinum capsules and maintained at 1770 K and 6 GPa for 20 h . Unit-cell dimensions of the resulting clinopyroxenes were determined from 2θ values of 25 reflections in the range $55<2 \theta<65^{\circ}$, measured on a four-circle diffractometer with Mo $K \alpha_{1}(\lambda=0.70930 \AA)$ (Table 1). The chemical compositions of the pyroxenes were
determined by microprobe analysis using $\mathrm{NaInSi}_{2} \mathrm{O}_{6}$ pyroxene and $\mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ thortveitite as standards, and by interpolation of the unit-cell dimensions. After the intensity data collection, $\mathrm{Na}\left(\mathrm{In}_{0 \cdot 40} \mathrm{Sc}_{0.60}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene was annealed by heating at 1073 K and atmospheric pressure for 70 h , and intensity data were recollected; this pyroxene is labelled In 40 Sc 60 A in the tables.*

The intensity measurements at room temperature were made with an Enraf-Nonius CAD-4 diffractometer using graphite-monochromatized Mo $K \alpha$ ($\lambda=0.71073 \AA$) radiation. Information on data collection is summarized in Table 2. The intensities of the reflections were collected in the range $2 \theta<63^{\circ}$ using variable-rate $\omega-2 \theta$ scans with scan range (0.8 $+0.35 \tan \theta)^{\circ}$. The observed intensities were corrected for Lorentz, polarization and monochromatorpolarization factors. No absorption corrections were applied although extinction corrections were made. The least-squares refinements were based on F_{o} values greater than $3 \sigma\left(F_{o}\right)$. The structure refinements were carried out on a MicroVAXII computer, using Enraf-Nonius (1985) SDP programs. Initial positional parameters and isotropic displacement factors were those of $\mathrm{NaScSi}_{2} \mathrm{O}_{6}$ (Hawthorne \& Grundy,

[^0]Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for nine $\mathrm{Na}(\mathrm{In}, \mathrm{Sc}) \mathrm{Si}_{2} \mathrm{O}_{6}$ clinopyroxenes

$B_{\text {cq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.										
		In 100	In80Sc20	In65Sc35	In60Sc40	In55Sc45	In50Sc50	In40Sc60A	In40Sc60	In20Sc80
Si	x	0.29172 (7)	$0 \cdot 29169$ (7)	$0 \cdot 29162$ (5)	$0 \cdot 29160$ (5)	$0 \cdot 29152$ (6)	$0 \cdot 29153$ (6)	0.29145 (5)	0.29135 (4)	0.29117 (5)
	y	0.08660 (6)	0.08661 (6)	$0 \cdot 08678$ (5)	0.08680 (5)	0.08682 (6)	0.08684 (6)	0.08692 (5)	0.08695 (4)	0.08721 (5)
	z	0.2475 (1)	0.2472 (1)	$0 \cdot 24646$ (9)	0.2463 (1)	$0 \cdot 2461$ (1)	0.2460 (1)	0.24583 (8)	0.24575 (8)	$0 \cdot 24473$ (9)
	B	0.412 (9)	0.395 (8)	$0 \cdot 390$ (6)	0.423 (7)	$0 \cdot 345$ (7)	0.321 (8)	$0 \cdot 328$ (6)	0.343 (5)	0.336 (6)
O1	x	0.1190 (2)	0.1191 (2)	0.1190 (1)	$0 \cdot 1188$ (1)	0.1190 (1)	0.1188 (2)	0.1189 (1)	0.1193 (1)	0.1187 (1)
	y	0.0797 (2)	0.0792 (2)	0.0789 (1)	0.0790 (1)	0.0788 (2)	0.0789 (2)	0.0789 (1)	0.0794 (1)	0.0786 (1)
	z	0.1505 (3)	0.1495 (3)	0.1496 (2)	0.1489 (2)	0.1489 (3)	0.1486 (3)	0.1478 (2)	0.1482 (2)	0.1476 (2)
	B	0.53 (2)	0.53 (2)	0.53 (2)	0.55 (2)	0.51 (2)	0.47 (2)	0.45 (2)	$0 \cdot 45$ (2)	0.46 (2)
O 2	x	0.3568 (2)	0.3570 (1)	0.3577 (1)	0.3576 (1)	0.3577 (2)	0.3581 (2)	0.3583 (1)	0.3583 (1)	$0 \cdot 3588$ (1)
	y	0.2455 (2)	0.2464 (2)	0.2464 (1)	0.2465 (1)	0.2470 (2)	$0 \cdot 2468$ (2)	$0 \cdot 2466$ (1)	0.2463 (1)	$0 \cdot 2470$ (1)
	z	0.3177 (3)	0.3152 (3)	0.3140 (2)	0.3138 (2)	0.3131 (3)	0.3121 (3)	0.3119 (2)	0.3117 (2)	$0 \cdot 3094$ (2)
	B	0.75 (2)	0.74 (2)	0.72 (2)	0.75 (2)	0.70 (2)	0.67 (2)	$0 \cdot 68$ (2)	0.70 (2)	$0 \cdot 65$ (2)
O3	x	0.3488 (1)	0.3491 (1)	$0 \cdot 3494$ (1)	0.3494 (1)	0.3500 (1)	$0 \cdot 3497$ (1)	$0 \cdot 3497$ (1)	0.34975 (9)	$0 \cdot 3500$ (1)
	y	0.0115 (2)	0.0111 (2)	0.0107 (1)	0.0105 (2)	0.0101 (2)	0.0100 (2)	0.0096 (2)	0.0093 (1)	0.0089 (2)
	z	0.0172 (3)	0.0182 (3)	0.0186 (2)	0.0182 (2)	0.0186 (2)	0.0187 (2)	0.0177 (2)	0.0180 (2)	0.0187 (2)
	B	0.66 (2)	$0 \cdot 67$ (2)	$0 \cdot 63$ (2)	$0 \cdot 67$ (2)	$0 \cdot 60$ (2)	0.57 (2)	0.61 (2)	$0 \cdot 61$ (2)	0.58 (2)
$M 1(\mathrm{In}, \mathrm{Sc})$	y	0.89471 (2)	0.89485 (2)	0.89507 (2)	0.89511 (2)	0.89518 (2)	0.89525 (3)	0.89535 (2)	0.89536 (2)	0.89571 (3)
	B	0.417 (4)	$0 \cdot 397$ (4)	0.418 (3)	0.413 (3)	$0 \cdot 410$ (5)	0.411 (5)	0.377 (4)	0.403 (4)	0.430 (5)
$M 2(\mathrm{Na})$	y	0.3033 (2)	0.3036 (1)	0.3039 (1)	0.3037 (1)	0.3037 (1)	0.3038 (2)	0.3036 (1)	0.3039 (1)	$0 \cdot 3039$ (1)
	B	1.47 (3)	1.40 (2)	$1 \cdot 36$ (2)	1.42 (2)	1.35 (2)	$1 \cdot 25$ (2)	$1 \cdot 30$ (2)	$1 \cdot 33$ (2)	$1 \cdot 27$ (2)

Table 4. $M 1(\mathrm{In}, \mathrm{Sc})-\mathrm{O}$ and $M 1-M 1$ distances $(\AA), M 1-\mathrm{Ol}-\mathrm{M} 1$ angles $\left({ }^{\circ}\right), \mathrm{Si}-\mathrm{O}$ distances (\AA), and $\mathrm{Si}-\mathrm{O} 3-\mathrm{Si}$ and $\mathrm{O} 3-\mathrm{O} 3-\mathrm{O} 3$ angles $\left({ }^{\circ}\right)$ in $\mathrm{Na}\left(\mathrm{In}, \mathrm{Sc}^{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes

1973). The atomic scattering factors (including f^{\prime} and $f^{\prime \prime}$) for neutral atoms were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

Final unweighted R and weighted $[1 / \sigma(F)]^{2} R$ indices are listed in Table 2, all $(\Delta / \sigma)_{\max }=0.00$, and final parameters are listed in Table 3. The atomic coordinates of the $\mathrm{NaInSi}_{2} \mathrm{O}_{6}$ pyroxene formed at 6 GPa pressure are in good agreement with those of the $\mathrm{NaInSi}_{2} \mathrm{O}_{6}$ pyroxene formed at atmospheric pressure (Hawthorne \& Grundy, 1974). Bond lengths and angles are listed in Table 4, together with the published values for $\mathrm{NaScSi}_{2} \mathrm{O}_{6}$ (Hawthorne \& Grundy, 1973).

Description and discussion

M1 octahedron

$\mathrm{Na}(\mathrm{In}, \mathrm{Sc}) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes are isomorphous with other Na pyroxenes (Clark, Appleman \& Papike, 1969). In and Sc occupy a distorted octahedral (M1) site. The variations in the mean $M 1-\mathrm{Ol}$ (hereafter abbreviated $\langle M 1-\mathrm{O} 1\rangle$) and $M 1-M 1$ distances and the $M 1-\mathrm{Ol}-M 1$ angle with chemical composition are shown in Fig. 1. There are two different trends. The solid circles in the figure represent the extrapolated values for the imaginary $\mathrm{NaInSi} \mathrm{O}_{6}$ pyroxene [hereafter abbreviated $\mathrm{NaIn}(\alpha)-P_{x}$]. The extrapo-
lated values are $2 \cdot 190 \AA$ for $\langle M 1-\mathrm{Ol}\rangle, 3 \cdot 308 \AA$ for $M 1-M 1$ and 98.0° for $M 1-\mathrm{Ol}-M 1$, respectively. The real $\mathrm{NaInSi}_{2} \mathrm{O}_{6}$ pyroxene is hereafter abbreviated to $\mathrm{Na} \operatorname{In}(\beta)-P_{x}$.

The variations of $M 1-M 1$ distance and $M 1-\mathrm{Ol}-M 1$ angle with $\langle M 1-\mathrm{Ol}\rangle$ are shown in Fig. 2; $M 1-M 1 \simeq 2\langle M 1-\mathrm{Ol}\rangle \sin [(M 1-\mathrm{Ol}-M 1) / 2]$. The solid circles in the figure represent the estimated values for $\mathrm{NaIn}(\alpha)-P_{x}$. Note that there are two different trends: the $\mathrm{Na}\left[\operatorname{In}(\alpha), \mathrm{Sc}^{2}\right] \mathrm{Si}_{2} \mathrm{O}_{6}$ series and the $\mathrm{Na}\left[\operatorname{In}(\beta), \mathrm{Sc}^{2} \mathrm{Si}_{2} \mathrm{O}_{6}\right.$ series.

The pyroxenes used in this study were formed at 6 GPa pressure. However, as mentioned above, the crystal structure of the In 100 pyroxene is the same as that of the $\mathrm{NaInSi}_{2} \mathrm{O}_{6}$ pyroxene formed at atmospheric pressure. Furthermore, the two polymorphs of the In 40 Sc 60 pyroxene show that the $\mathrm{Na}\left[\mathrm{In}(\alpha), \mathrm{Sc}_{2}\right] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene changes to the $\mathrm{Na}\left[\operatorname{In}(\beta), \mathrm{Sc}^{\mathrm{C}} \mathrm{Si}_{2} \mathrm{O}_{6}\right.$ pyroxene by heating at atmospheric pressure. These facts indicate that the $\mathrm{Na}[\operatorname{In}(\alpha), \mathrm{Sc}] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene is the high-pressure polymorph and the $\mathrm{Na}\left[\operatorname{In}(\beta), \mathrm{Sc}_{\mathrm{c}}\right] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene is the low-pressure polymorph.

The phase transition between the two polymorphs may be caused by the geometrical change of the octahedral site. Since $M 1-\mathrm{Ol}-M 1+\mathrm{Ol}-M 1-\mathrm{Ol}$

Fig. 1. Variation of $M 1-\mathrm{O} 1-M 1$ angle, $M 1-M 1$ distance and mean $M 1-\mathrm{Ol}$ distance with chemical composition in $\mathrm{Na}(\mathrm{In}, \mathrm{Sc}) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes. Solid circles represent the extrapolated values for $\mathrm{NaIn}(\alpha)-P_{x}$.
$=180^{\circ}$, the two trends in Figs. 1 and 2 imply that the $\operatorname{In}(\alpha)$ ion occupies a less distorted octahedral site, and $\operatorname{In}(\beta)$ ion occupies a more distorted octahedral site.

These physico-chemical and crystal-chemical results suggest that there are two different electronic states (e.g. $d^{10}, d-s$ mixing and/or $d-p$ mixing states) for the octahedral In^{3+} ions, reflecting pressure and chemical conditions.

Si tetrahedron

There are two kinds of bonds in the pyroxene tetrahedron; one is a bridging (br) bond connecting the tetrahedra along the chain, and the other is a nonbridging (nbr) bond, with each tetrahedron having two (br) and two (nbr) bonds. Fig. 3 shows the variations of $\mathrm{Si}-\mathrm{O} 3-\mathrm{Si}$ and $\mathrm{O} 3-\mathrm{O} 3-\mathrm{O} 3$ angles with chemical composition. The $\mathrm{Si}-\mathrm{O} 3-\mathrm{Si}$ angle increases with increasing In content, that is, with an increase of the mean radius of the M^{3+} ions. On the other hand, the $\mathrm{O} 3-\mathrm{O} 3-\mathrm{O} 3$ angle correlates with chemical composition along two different trends: the $\mathrm{Na}\left[\operatorname{In}(\alpha),{\mathrm{Sc}] \mathrm{Si}_{2} \mathrm{O}_{6} \text { pyroxenes and the }}^{2}\right.$ $\mathrm{Na}\left[\operatorname{In}(\beta), \mathrm{Sc}^{2}\right] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes. Fig. 4 shows the variations of $\langle\mathrm{Si}-\mathrm{O}(\mathrm{br})\rangle$ and $\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$ distances with chemical composition. $\langle\mathrm{Si}-\mathrm{O}(\mathrm{br})\rangle$ does not vary significantly with chemical composition. On the other hand, $\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$ correlates with chemical composition in two different ways. $\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$ in $\mathrm{Na}[\mathrm{In}(\alpha), \mathrm{Sc}] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene decreases with increasing $\operatorname{In}(\alpha)$ content. By contrast, $\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$ in $\mathrm{Na}\left[\operatorname{In}(\beta), \mathrm{Sc}_{\mathrm{C}} \mathrm{Si}_{2} \mathrm{O}_{6}\right.$ pyroxene does not change with chemical composition.

Fig. 2. Variation of $M 1-M 1$ distance and $M 1-\mathrm{Ol}-M 1$ angle with mean $M 1-\mathrm{OI}$ distance in $\mathrm{Na}\left(\mathrm{In}, \mathrm{Sc}^{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes. Solid circles represent the extrapolated values for $\operatorname{NaIn}(\alpha)-P_{x}$.

The dependence of $\mathrm{Si}-\mathrm{O}$ distances on size, electronegativity and electron density of the octahedral M^{3+} ion in $\mathrm{Na}^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes was examined by Ohashi (1979, 1981, 1983) and Ohashi, Fujita \& Osawa (1982, 1983). Generally, $\langle\mathrm{Si}-\mathrm{O}\rangle$ increases with an increase in the radius of the M^{3+} ion. In the $\mathrm{Sc}-\mathrm{Ti}-\mathrm{V}-\mathrm{Cr}-\mathrm{Al}$ series, the size of the M^{3+} ion affects $\mathrm{Si}-\mathrm{O}(\mathrm{br})$ and $\mathrm{Si}-\mathrm{O}(\mathrm{nbr})$ equally. On the other hand, in the $\mathrm{In}-\mathrm{Fe}-\mathrm{Ga}$ series, the size of the M^{3+} ion affects only $\mathrm{Si}-\mathrm{O}(\mathrm{br})$.

Assuming that the $\mathrm{Na}[\operatorname{In}(\alpha), \mathrm{Sc}] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene belongs to the $\mathrm{Sc}-\mathrm{Al}$ series, the differences, $d_{\mathrm{br}-\Delta}$ and $d_{\mathrm{nbr}-\Delta}$, are independent of the size of the M^{3+} ion, where $\Delta=\left\{\langle\mathrm{Si}-\mathrm{O}\rangle\right.$ in $\mathrm{Na}\left[\operatorname{In}(\alpha),{\left.\mathrm{Sc}] \mathrm{Si}_{2} \mathrm{O}_{6}\right\}}\right.$ $-\left\{\langle\mathrm{Si}-\mathrm{O}\rangle\right.$ in $\left.\mathrm{NaAlSi}_{2} \mathrm{O}_{6}\right\}, d_{\mathrm{br}-\Delta}=\langle\mathrm{Si}-\mathrm{O}(\mathrm{br})\rangle-\Delta$, and $d_{\mathrm{nbr}-\Delta}=\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle-\Delta . \Delta, d_{\mathrm{br}-\Delta}$ and $d_{\mathrm{nbr}-\Delta}$ for the $\mathrm{Na}\left[\operatorname{In}(\alpha) \mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{6}\right.$ pyroxenes are listed in Table 5 and shown in Fig. 5.
The scaled $\mathrm{Si}-\mathrm{O}(\mathrm{br})$ distance increases and the scaled $\mathrm{Si}-\mathrm{O}(\mathrm{nbr})$ distance decreases with an increase

Fig. 3. Variation of $\mathrm{Si}-\mathrm{O} 3-\mathrm{Si}$ and $\mathrm{O} 3-\mathrm{O} 3-\mathrm{O} 3$ angles with chemical composition in $\mathrm{Na}\left(\mathrm{In}, \mathrm{Sc}^{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes.

Fig. 4. $\mathrm{Si}-\mathrm{O}$ distances versus chemical composition in $\mathrm{Na}(\mathrm{In}, \mathrm{Sc})-$ $\mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes. Open circles represent $\langle\mathrm{Si}-\mathrm{O}(\mathrm{br})\rangle$ and $\langle\mathrm{Si}-$ $\mathrm{O}(\mathrm{nbr})\rangle$ distances; solid circles represent $\langle\mathrm{Si}-\mathrm{O}\rangle$ distances.

Table 5. The differences $(\AA), \Delta, d_{\mathrm{br}-\Delta}, d_{\mathrm{nbr}-\Delta}$ and $d_{\mathrm{br}-2 \Delta}$, in $\mathrm{Na}(\mathrm{In}, \mathrm{Sc}) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes and the mean electronegativity (χ) of the octahedral ions

	Δ^{*}	$d_{\mathrm{br}-\Delta}$	$d_{\text {nbr - }}$ -	$d_{\text {br }-2 s}$	χ
In 100	0.009			1.635	1.7
In80Sc20	0.009			1.634	1.62
In65Sc35	0.008			1.636	1.56
In60Sc40	0.008			1.636	1.54
In55Sc45	0.009			1.635	1.508
In50Sc50	0.008			1.635	1.484
In40Sc60A	0.007			1.637	1.46
$\operatorname{In}(\alpha) 100$		$1.651+$	1.595t		1.18t
$\ln 40 \mathrm{Sc} 60$	0.006	1.646	1.599		1.252
$\ln 20 \mathrm{Sc} 80$	0.007	1.645	1.601		1.276
Scl00	0.009	1.644	1.602		1.3
* $\Delta=\langle\mathrm{Si}-\mathrm{O}\rangle-1.623(\AA)$. \dagger Extrapolated values.					

in the $\mathrm{NaIn}(\alpha) \mathrm{Si}_{2} \mathrm{O}_{6}$ component, suggesting that the $\operatorname{In}(\alpha)^{3+}$ ion is more electropositive than the Sc^{3+} ion. These changes may be accompanied by expansion of the Si orbitals and by an increases in the π bonding between Si and $\mathrm{O}(\mathrm{nbr})$. The solid circles in the figure represent the extrapolated values for $\mathrm{NaIn}(\alpha)-P_{x}$. The extrapolated values are $1.651 \AA$ for $d_{\mathrm{br}-\Delta}$ and $1.595 \AA$ for $d_{\mathrm{nbr}-\Delta}$.

On the other hand, $\mathrm{Si}-\mathrm{O}$ distances in $\mathrm{Na}\left[\operatorname{In}(\beta), \mathrm{Sc}_{\mathrm{C}}\right] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes do not change with composition (Fig. 4). Assuming that $\operatorname{In}(\beta)-P_{x}$ belongs to the In-Ga series, the difference, $d_{\mathrm{br}-2 \Delta}$, and the mean $\mathrm{Si}-\mathrm{O}(\mathrm{nbr})$ distance are independent of the size of the M^{3+} ion, where $d_{\mathrm{br}-2 \Delta}=\langle\mathrm{Si}-$ $\mathrm{O}(\mathrm{br})\rangle-2 \Delta . \Delta$ and $d_{\mathrm{br}-2 \Delta}$ are listed in Table 5 and are shown in Fig. 5. In the $\mathrm{Na}\left[\operatorname{In}(\beta), \mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{6}\right.$ pyroxenes, $\langle\mathrm{Si}-\mathrm{O}\rangle$ and the scaled $\mathrm{Si}-\mathrm{O}$ distances do not change with composition, suggesting that they do not depend on the mean electronegativity of the octahedral ions.

Fig. 6 and Table 6 show the variation of scaled $\mathrm{Si}-\mathrm{O}$ distance with the electronegativity of the octahedral M^{3+} ion. The solid circles in the figure represent the scaled and extrapolated $\mathrm{Si}-\mathrm{O}$ distances for the $\mathrm{Na}\left[\operatorname{In}(\alpha), \mathrm{Sc}^{2} \mathrm{Si}_{2} \mathrm{O}_{6}\right.$ pyroxenes. Assuming that

Fig. 5. The differences, $d_{\mathrm{br}-\Delta}, d_{\mathrm{nbr}-\Delta}$ and $d_{\mathrm{br}-2 \Delta}$, and $\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$ distances versus chemical composition in $\mathrm{Na}\left(\mathrm{In}, \mathrm{Sc}_{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes. Solid circles represent the extrapolated values for $\mathrm{NaIn}(\alpha)-P_{x}$.
$\mathrm{Na}[\mathrm{In}(\alpha), \mathrm{Sc}] \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene belongs to the $\mathrm{Sc}-\mathrm{Al}$ series, the electronegativity of the $\operatorname{In}(\alpha)$ is estimated as $1 \cdot 18$ on Pauling's scale.

Ionic radius and electronegativity of indium

The $\left\langle M^{3+}-\mathrm{O}\right\rangle$ distance in $\mathrm{Na} M^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene is represented by the equation $\left\langle M^{3+}-\mathrm{O}\right\rangle=$ $0.815 r_{M^{+}}+1.496(\AA)$, where $r_{M^{3+}}$ is the effective radius of the M^{3+} ion (Ribbe \& Prunier, 1977). The $\langle\mathrm{In}-\mathrm{O}\rangle$ distance in $\mathrm{NaIn}(\alpha) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene is estimated as $2.153 \AA$ from the $\langle(\mathrm{In}, \mathrm{Sc})-\mathrm{O}\rangle$ distances in $\mathrm{Na}\left[\operatorname{In}(\alpha), \mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{6}\right.$ pyroxenes, and the $\langle\mathrm{In}-\mathrm{O}\rangle$ distance in $\mathrm{NaIn}(\beta) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxene is $2 \cdot 141 \AA$. Therefore, the effective ionic radii of $\operatorname{In}(\alpha)$ and (β) are 0.805 and $0.791 \AA$, respectively. These values are nearly the same as the effective ionic radius ($r=$ $0 \cdot 80 \AA$) (Shannon, 1976).

On the other hand, there is considerable variation in the electronegativities of the octahedral In^{3+} ions. The electronegativities of $\operatorname{In}(\alpha)$ and (β) are estimated as $1 \cdot 18$ and 1.7 , respectively. The former is unusually electropositive, and the latter is coincident with the electronegativity calculated from the heat of formation of indium halides (Pauling, 1960; Ohashi, 1987). These variations may be caused by the different electronic structures (e.g. $d^{10}, d-s$ mixing and $d-p$ mixing states) mentioned above.
The $\mathrm{Na}\left(\mathrm{In}, \mathrm{Sc}^{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes used in this study were formed at 6 GPa pressure. However, as mentioned above, $\operatorname{In}(\alpha)$ is the high-pressure-type ion and $\operatorname{In}(\beta)$ is the low-pressure-type ion. At high pressure, the In-O distance is short and the crystal field is strong. Therefore, it is expected that the outer ten

Fig. 6. The differences, $d_{\mathrm{br}-\Delta}, d_{\mathrm{nbr}-\Delta}$ and $d_{\mathrm{br}-2 \Delta}$, and $\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$ distance versus electronegativity (x) of the M^{3+} ion for $\mathrm{Na} M^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes. Solid circles represent the scaled and extrapolated $\mathrm{Si}-\mathrm{O}$ distances for $\mathrm{Na}\left[\ln (\alpha),{\mathrm{Sc}] \mathrm{Si}_{2}}^{2} \mathrm{O}_{6}\right.$ pyroxenes.

Table 6. The differences $(\AA), \Delta, d_{\mathrm{br}-\Delta}, d_{\mathrm{nbr}-\Delta}$ and $d_{\mathrm{br}-2 \Lambda}, \quad$ and $\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$ distances $(\overline{\mathrm{A}})$ in $\mathrm{Na} M^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ pyroxenes and the electronegativities (χ) of the M^{3+} ions

The electronegativities in parentheses are the estimated values; other values from Pauling (1960).

M^{3+}	Δ^{*}	$d_{\mathrm{br}-\Delta}$	$d_{\mathrm{nbr}-\Delta}$	$d_{\mathrm{br}-2 \Delta}$	$\langle\mathrm{Si}-\mathrm{O}(\mathrm{nbr})\rangle$	χ	Ref.
Sc	0.009	1.644	1.602			1.3	(a)
Cr	0.001	1.641	1.605			$(1.35) \dagger$	(b)
V	0.001	1.638	1.608			$(1.4) \dagger$	(a)
Ti	0.004	1.635	1.610			$(1.45) \dagger$	(c)
Al	0	1.632	1.613			1.5	(a)
$\mathrm{In}(\beta)$	0.009			1.634	1.612	1.7	(a)
Fe	0.005			1.632	1.614	1.8	(a)
Mn	0.008			1.630	1.616	$(1.85) \dagger$	(d)
Ga	0.003			1.628	1.617	(1.9)	(e)

References: (a) Ohashi (1981); (b) Ohashi (1983); (c) Ohashi, Fujita \& Osawa (1982); (d) Ohashi, Osawa \& Tsukimura (1987); (e) Ohashi, Fujita \& Osawa (1983).

* Δ is equal to $\langle\mathrm{Si}-\mathrm{O}\rangle-1.623(\AA)$.
\dagger These values are changeable and increase with an increase in the regularity of the octahedral site (e.g. Cr changes from 1.35 to 1.55).
electrons will occupy the $4 d$ orbitals and the screening constant for the d^{10} state will be higher than those for the $d-s$ and/or $d-p$ mixing states. Thus the unusual electropositive character of $\operatorname{In}(\alpha)$ may be caused by the high screening constant for the d^{10} state.

References

Clark, J. R., Appleman, D. E. \& Papike, J. J. (1969). Mineral. Soc. Am. Spec. Pap. 2, 31-50.
Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Fukunaga, O., Yamaoka, S., Endo, T., Akaishi, M. \& Kanda, H. (1979). High-Pressure Sci. Technol. 1, 846-852.

Hawthorne, F. C. \& Grundy, H. D. (1973). Acta Cryst. B29, 2615-2616.
Hawthorne, F. C. \& Grundy, H. D. (1974). Acta Cryst. B30, 1882-1884.
Ohash, H. (1979). J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 74, 413-416.
Ohashi, H. (1981). J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 76, 308-311.
Ohashl, H. (1983). J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 78, 274-280.
Ohashi, H. (1987). Thermochim. Acta, 120, 115-120.
Ohashi, H., Fuitia, T. \& Osawa, T. (1982). J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 77, 305-309.
Ohashi, H., Fuilta, T. \& Osawa, T. (1983). J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 78, 159-163.
Ohashi, H., Osawa, T. \& Tsukimura, K. (1987). Acta Cryst. C43, 605-607.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Ribbe, P. H. \& Prunier, A. R. (1977). Am. Mineral. 62, 710-720.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

[^0]: * Lists of structure factors, atomic coordinates and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53425 (54 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

